STEREOSELECTIVE SYNTHESIS OF (±)-PHOMENONE, A PHYTOTOXIC METABOLITE OF PHOMA EXIGUA, AND (±)-3-EPIPHOMENONE 1

Koji Yamakawa, * Masato Kobayashi, Shotaro Hinata, and Tsuyoshi Satoh

Faculty of Pharmaceutical Sciences, Science University of Tokyo

Ichigaya-funagawara-machi, Shinjuku-ku, Tokyo 162, Japan

Summary Stereoselective synthesis of (\pm) -phomenone, a phytotoxic metabolite from the fungus Phoma exigua, and (\pm) -3-epiphomenone is described.

Phomenone, a phytotoxic metabolite from the fungus $Phoma\ exigua$ was found by Bousquet $et\ al.^2$ The structure of phomenone was established as an eremophilane-type sesquiterpenoid (\underline{la}) by physicochemical data and single crystal X-ray analysis. Some mycotoxins, PR-toxin and eremofortins, have been isolated from $Penicillium\ roqueforti$ and their structure has been elucidated as eremophilane-type sesquiterpenoids.

We wish to report the first total synthesis of (\pm) -phomenone $(\underline{1a})$, a biologically active sesquiterpenoid metabolite, and (\pm) -3-epiphomenone $(\underline{10})$ from the bicyclic enone $(\underline{2})$. Treatment of (\pm) - 3^{5b} derived from $\underline{2}$ with methyl(carboxysulfamoyl)triethylammonium hydroxide inner salt gave a trienone $(\underline{4a})$, mp 55-58° (87% yield), which was treated with 70% AcOH solution at 100° for 1 hr to give a diketone $(\underline{4b})$, mp 64.5-66° and 82-83°, as dimorphic forms (90% yield). Reduction of $\underline{4b}$ with NaBH₄ afforded 3α -ol $(\underline{4c})$, oil, and 3β -ol $(\underline{4d})$, mp 88-90°, in 15% and 75% yield, respectively. Oxidation of $\underline{4d}$ with CrO₃-pyridine-H₂O gave $\underline{4b}$ in 82% yield. Epoxidation of $\underline{4c}$ with m-chloroperbenzoic acid in methylene chloride in the presence of NaHCO₃ solution gave a mixture of α - and β -epoxides $(\underline{5})$ in 86% yield. Treatment of $\underline{5}$ with lithium diethylamide in refluxing ether for 2 hr afforded a dihydro-trienone $(\underline{6})$ in 26% yield. Epoxidation of $\underline{6}$ with 30% H₂O₂ in refluxing ethanol in the presence of catalytic amount of NaHCO₃ solution for 3 hr afforded an α -epoxide (\pm) - $\underline{1a}$, oil (40% yield), stereoselectively.

(2)
(3)
(4a)
$$R = \langle {}^{O}_{O} \rangle$$
(4b) $R = 0$
(4c) $R = \langle {}^{O}_{O} \rangle$
(4d) $R = \langle {}^{O}_{O} \rangle$
(5)
(1a) $R = H$
(1b) $R = COCH_3$

(±)-Phomenone ($\frac{1}{2}$): High-resolution MS: M⁺, 264.1329 for $C_{15}H_{20}O_{4}$; NMR δ : 1.19 (3H, d, J=6 Hz; 4-CH₃), 1.26 (3H, s; 5-CH₃), 3.40 (1H, s; 6-H), 4.22 (2H, d, J=4 Hz; 13-H), 5.21 and 5.24 (each 1H, m, W/2=3 Hz; \preceq_{H}^{H}), 5.71 (1H, d, J=2 Hz; 9-H); UV λ_{\max}^{MeOH} 243 nm; IR cm⁻¹: 3400 (0H), 1670 (CO); MS: 264 (M)⁺, 249 (M-15)⁺, 246 (M-18)⁺, 235 (M-29)⁺, 231 (M-18-15)⁺, 123, 91.

Diacetate (±)- $\frac{1b}{1b}$ (prepared with Ac₂0-pyridine): NMR δ : 1.12 (3H, d, J=7 Hz; 4-CH₃), 1.29 (3H, s; 5-CH₃), 2.03 and 2.09 (each 3H, s; 3- and 13-OAc), 3.31 (1H, s; 6-H), 4.76 (2H, m, W/2=3 Hz; 13-H), 5.38 (2H, m, W/2=4 Hz; 12-H), 5.75 (1H, d, J=1.5 Hz; 9-H); UV λ_{max}^{EtOH} 241 nm; IR cm⁻¹: 1740, 1680 (CO), 1245, 1030 (OAc); MS: 288 (M-60)⁺.

NMR, UV, and IR spectral data of (\pm) - \underline{la} and (\pm) - \underline{lb} were in good agreement with those of phomenone and phomenone diacetate, respectively, reported by Bousquet et αl .²

$$(4a) \longrightarrow (7) \longrightarrow (8) \longrightarrow (8)$$

$$(9a) R = \langle \stackrel{\circ}{\circ} \rceil \qquad (9b) R = 0 \longrightarrow (10)$$

A stereoselective synthesis of (\pm) -3-epiphomenone (10) was examined by a route similar to Trienone (4a) was treated with m-chloroperbenzoic acid to afford a mixture of Treatment of 7 with lithium diethylamide under the same condition as for 5 affordepoxides (7). ed a trienone alcohol (8), oil, in 70% yield. Epoxidation of 8 with 30% H_2O_2 -Na₂CO₃ gave α -epoxide (9a), mp 135-136° (56% yield). Deketalization of 9a with 70% AcOH solution at room temperature for 3 days afforded a ketone (9b)(75% yield). Reduction of 9b with NaBH_A gave (±)-3-epiphomenone (10), mp 130-132°, (70% yield) together with a small amount of the minor product. (±)- $\frac{10}{10}$: High-resolution MS: M⁺, 264.1338 for $C_{15}H_{20}O_4$; NMR δ : 1.28 (3H, d, J=7 Hz; 4-CH₃), 1.44 (3H, s; 5-CH₃), 3.37 (1H, s; 6β-H), 4.00 (1H, m, W/2=9 Hz; 3α -H), 4.26 (2H, m, 13-H), 5.32 and 5.41 (each 1H, m; \prec_H^H), 5.83 (1H, d, \mathcal{J} =1.5 Hz; 9-H); UV λ_{max}^{EtOH} 247 nm (ϵ 11200); IR cm⁻¹: 3445 (0H), 1650 (CO), 1615 (C=C), 1055. The minor product, (\pm) -la, was not obtained completely pure, but crude (\pm) -la and its diacetate (\pm) -lb were indicated by NMR spectral comparison with those of the authentic specimens.

References

- 1. Studies on Terpenoids and Related Alicyclic Compounds. XX. Part XIX. K. Yamakawa, T. Satoh, N. Ohba, and R. Sakaguchi, *Chem. Lett.*, 755 (1979).
- 2. C. Riche, C.P. Billy, M. Devys, A. Gaudemer, M. Barbier, and J.F. Bousquet, *Tetrahedron Lett.*, 2765 (1974).
- 3. R.D. Wei, H.K. Schnoes, P.A. Hart, and F.M. Strong, Tetrahedron, 31, 109 (1975).
- 4. S. Moreau, M. Cacan, and A.L. Combier, J. Org. Chem., 42, 2632 (1977).
- a) K. Yamakawa, I. Izuta, H. Oka, and R. Sakaguchi, Tetrahedron Lett., 2187 (1974);
 b) K. Yamakawa, I. Izuta, H. Oka, R. Sakaguchi, M. Kobayashi, and T. Satoh, Chem. Pharm. Bull. (Tokyo), 27, 331 (1979).

(Received in Japan 30 June 1979)